Protection Devices

Telugu version II English version II Hindi version

English version

<<Star & Delta connection

 Types of Motors >>

Power-system protection

Power-system protection is a branch of electrical power engineering that deals with the protection of electrical power systems from faults through the isolation of faulted parts from the rest of the electrical network. The objective of a protection scheme is to keep the power system stable by isolating only the components that are under fault, whilst leaving as much of the network as possible still in operation. Thus, protection schemes must apply with very pragmatic and pessimistic approach to clearing system faults. The devices that are used to protect the power systems from faults are called protection devices.

Protective device

A digital (numeric) multifunction protective relay for distribution networks. A single such device can replace many single-function electromechanical relays, and provides self-testing and communication functions.

  • Protective relays control the tripping of the circuit breakers surrounding the faulted part of the network
  • Automatic operation, such as auto-re-closing or system restart
  • Monitoring equipment which collects data on the system for post event analysis

While the operating quality of these devices, and especially of protective relays, is always critical, different strategies are considered for protecting the different parts of the system. Very important equipment may have completely redundant and independent protective systems, while a minor branch distribution line may have very simple low-cost protection.

There are three parts of protective devices:

Advantages of protected devices with these three basic components include safety, economy, and accuracy.

  • Safety: Instrument transformers create electrical isolation from the power system, and thus establishing a safer environment for personnel working with the relays.
  • Economy: Relays are able to be simpler, smaller, and cheaper given lower-level relay inputs.
  • Accuracy: Power system voltages and currents are accurately reproduced by instrument transformers over large operating ranges.

Types of protection

High-voltage transmission network

Protection on the transmission and distribution serves two functions: Protection of plant and protection of the public (including employees). At a basic level, protection looks to disconnect equipment which experience an overload or a short to earth. Some items in substations such as transformers might require additional protection based on temperature or gas pressure, among others..

Generator sets

In a power plant, the protective relays are intended to prevent damage to alternators or to the transformers in case of abnormal conditions of operation, due to internal failures, as well as insulating failures or regulation malfunctions. Such failures are unusual, so the protective relays have to operate very rarely. If a protective relay fails to detect a fault, the resulting damage to the alternator or to the transformer might require costly equipment repairs or replacement, as well as income loss from the inability to produce and sell energy.

Overload and back-up for distance (overcurrent)

Overload protection requires a current transformer which simply measures the current in a circuit. There are two types of overload protection: instantaneous overcurrent and time overcurrent (TOC). Instantaneous overcurrent requires that the current exceeds a predetermined level for the circuit breaker to operate. TOC protection operates based on a current vs time curve. Based on this curve if the measured current exceeds a given level for the preset amount of time, the circuit breaker or fuse will operate. The function of both types is explained in “Non-Directional Overcurrent Protection” on YouTube.

Earth fault (“ground fault” in the United States)

Earth fault protection again requires current transformers and senses an imbalance in a three-phase circuit. Normally the three phase currents are in balance, i.e. roughly equal in magnitude. If one or two phases become connected to earth via a low impedance path, their magnitudes will increase dramatically, as will current imbalance. If this imbalance exceeds a pre-determined value, a circuit breaker should operate. Restricted earth fault protection is a type of earth fault protection which looks for earth fault between two sets current transformers[4] (hence restricted to that zone).

Distance (impedance relay)

Distance protection detects both voltage and current. A fault on a circuit will generally create a sag in the voltage level. If the ratio of voltage to current measured at the relay terminals, which equates to an impedance, lands within a predetermined level the circuit breaker will operate. This is useful for reasonable length lines, lines longer than 10 miles, because its operating characteristics are based on the line characteristics. This means that when a fault appears on the line the impedance setting in the relay is compared to the apparent impedance of the line from the relay terminals to the fault. If the relay setting is determined to be below the apparent impedance it is determined that the fault is within the zone of protection. When the transmission line length is too short, less than 10 miles, distance protection becomes more difficult to coordinate. In these instances, the best choice of protection is current differential protection[citation needed].


The objective of protection is to remove only the affected portion of the plant and nothing else. A circuit breaker or protection relay may fail to operate. In important systems, a failure of primary protection will usually result in the operation of backup protection. Remote backup protection will generally remove both the affected and unaffected items of plant to clear the fault. Local backup protection will remove the affected items of the plant to clear the fault.

Low-voltage networks

The low-voltage network generally relies upon fuses or low-voltage circuit breakers to remove both overload and earth faults.

<<Star & Delta connection                                                                              Types of Motors >>